
Journal of Statistical Physics, Vol. 97, Nos. 3�4, 1999

Critical Slowing Down on the Dynamics of a Bistable
Reaction-Diffusion System in the Neighborhood of
Its Critical Point
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We investigate the nature of some critical decay processes in a bounded bistable
reaction-diffusion system, through a perturbative expansion of its nonequi-
librium potential. We elucidate the scaling behavior of the damped relaxation
time.
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I. INTRODUCTION

Pattern formation and propagation is one of the main concerns in the
study of complex systems and has became a very active field of research in
physics, chemistry and biology, both from the experimental and from the
theoretical points of view. The description in terms of reaction-diffusion
(RD) schemes provides a fruitful source of tractable models. Some of those
models have been extensively investigated during the past years.(1�6)

Nevertheless there are still questions to be answered. We will address here
the one corresponding to the expected critical slowing down (CSD) of the
evolution of the patterns, when a bistable RD system approaches its critical
point.

The specific system we shall focus on, is the same one for which we
have recently analyzed the structural stability of the stationary patterns.(7)
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That is the so-called ``hot-spot'' model (a superconductive resistor immersed
in a heat bath) whose formulation, already scaled, reads

�T (x, t)
�t

=
�2T
�x2 &T+Y[T&%] (1)

Here T (x, t) is a real field representing the distribution of temperature
along the resistor for &L<x<L, Y is the Heaviside step function, % is the
scaled critical temperature of the superconducting transition and the tem-
perature of the heat bath has been taken as zero.(6�11) We shall apply
Dirichlet boundary conditions (DBC) by fixing the values of T at the
boundaries:

T (&L, t)=T (L, t)=0 (2)

For bistable dynamics, the resistor has superconducting phases at
T<% and a normal phase for T>% coexisting in a stationary state.(10, 11)

The piecewise linear form of the dissipation term allows an analytical treat-
ment. We recall that most of the qualitative results obtained for this
piecewise linear model could be straightforwardly extended to systems with
smoother bistable potentials.(7, 12, 13)

Equation (1) has a critical point, which separates a bistable dynamics
from a monostable one. That kind of critical point, where two fixed points
of different stability collapse, were already analyzed within a Lyapunov
functional approach for monostable RD systems in refs. 14 and 15, and for
bistable RD systems in refs. 16 and 17. As it was indicated in refs. 14 and 16,
a critical slowing down process in the evolution of the spatial structures is
expected in the neighborhood of the critical point. A theoretical and
numerical analysis of those phenomena, based on a Landau expansion of
the nonequilibrium potential, can be found in ref. 17 where a mechanical
analogy is also discused.

In this communication we will see how the problem of pattern forma-
tion and relaxation can be analyzed in the critical region in terms of a
single scalar parameter. That parameter measures the distance from the
critical point, along one of the axis of the parameter space. Our analysis
will be carried out through an asymptotic time-expansion of the non-
equilibrium potential of the system.

II. PATTERN FORMATION

Let us briefly review, for completeness, the symmetric stationary pat-
terns of Eq. (1) and their stability.(11) Our control parameters are going to
be L and %.
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A. Stationary Patterns

Equation (1) is solved in the stationary case by proposing different
linear combinations of hyperbolic functions for T (x), depending on
whether T>% or T�%. Those functions, as well as their first derivatives,
are matched at the interphase, namely xc , where T (xc)=%. From that
matching we get

xc=(L�2)\argcosh \ 1&2%
1&2%c+ (3)

being %c= 1
2(1&1�cosh(L)). %c approaches asymptotically to 1�2, thus for

L-7.5 the size effect is no longer relevant to it. By imposing the announced
DBC, we get the particular solutions of the stationary case. The resulting
structures have a hot (activated) region at &xc<x<xc , where T>% and
Joule-dissipation occurs. In Fig. 1a we show xc �L as a function of % for
several values of L. The upper (lower) branch in Fig. 1a corresponds to the
upper (lower) sign in ec. (3). The coalescence of both non-uniform struc-
tures takes place when % reaches the critical value %c . At that critical point,
the dynamics of the system changes from bistable (%<%c) to monostable
(%�%c). The solution T=0 becomes the only locally stable attractor and
the two nonuniform structures collapse.

Fig. 1. Description of the system. Left) 1a: Stationary patterns: xc �L vs. %. The curves are
parameterized with the values of L. The existence of a maximum allowed value of % for each
L can be appreciated; moreover, the solutions are twofold. Right) 1b: time behavior of the
nonequilibrium potential F during decay processes for different values of 2%. Note that for
2% � 0 the system becomes critically damped. The curves are labeled with their 2% values and
we fixed L=1.
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In the vicinity of the critical point, Eq. (3) takes the asymptotic form:

xc&L�2=\- 2% (4)

where we have introduced 2%=%c&%.

B. Local Stability

The standard linear stability analysis for the resulting stationary struc-
tures, shows that the upper branches in Fig. 1a correspond to locally stable
patterns, the lower ones being unstable. For each parameter set, the struc-
ture with the largest hot region (i.e., bigger xc and then bigger Joule-effect
dissipation) is stable, whereas the other one is unstable. Those patterns
occur beyond the linear regime, where the minimum entropy production
principle is no longer valid. The locus of the dividing points between both
branches determines the line of marginal stability. The stationary homoge-
neous solution T=0 is locally stable for any values of the parameters.(11)

C. Global Stability

For Eq. (1), the nonequilibrium potential functional F[T ] takes the
form:

F=|
L

&L _
1
2 \

�T
�x +

2

+\T
2 +

2

&(T&%) Y[T&%]& dx (5)

As Eq. (1) represents a gradient system, F behaves as a Lyapunov func-
tional.(7) and we can rewrite it as dT (x, t)�dt=&$F[T ]�$T. During its
temporal evolution, F decreases through the steepest descent trajectory
until it reaches one of its minima. The unstable structures are related to
extrema of F of the saddle-point type and define the magnitude of the
barrier between the different locally stable attractors.(4, 16, 18)

III. CRITICAL EXPONENT

The nonequilibrium potential for gradient systems admits the following
asymptotic perturbative expansion, in terms of t, around a stable stationary
structure T (x):(14)

F[T (x)+=(x, t)]=F[T (x)]+(1�2) |C0|2 exp(&2*0 t)+ } } } (6)
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where

C0=|
L

&L
=(x, t=0) 80(x) dx (7)

and we discard faster exponentially decaying modes with amplitudes of
order epsilon-square. 80(x) is the normalized eigenfunction associated with
the lowest eigenvalue *0(L, %) of the linear stability analysis for the stable
stationary structure. In the critical region, where marginal stability occurs,
we expect a CSD in the dynamics of the system. That is also suggested by
the time dependence of the nonequilibrium potential.

We have simulated the process of decay of perturbations near the criti-
cal region by finite differences. We have chosen patterns in the vicinity of
the saddle point mentioned before (i.e., the unstable stationary structures
slightly perturbed) as initial conditions.(17) In Fig. 1b we show the time
evolution of F following small perturbations of unstable patterns, for
several values of 2%. The decay to the beyond-threshold attractor results to
be critically damped for 2% � 0.

Fig. 2. Damped relaxation: *0 vs. 2%. The curves are labeled with the corresponding values
of L. Marginal stability occurs for 2% � 0. For L-7.5, where the size of the system no longer
affects the value of %c , the curves coalesce over a straight line. Insert: *0 vs. 2% in a log-log
scale for small and moderate values of L. The curves are labeled with the corresponding values
of L.
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From Eq. (6) we can link the time-scale associated with the
asymptotic evolution of the system, namely {R , to the lowest linear-
stability eigenvalue of the stable attractor *0=2{&1

R . We have followed the
behavior of that eigenvalue in the neighborhood of the critical point. In
Fig. 2 we show *0 vs. 2% for several values of L. For L-7.5, where the size
effect is no longer relevant to %c , the curves associated with different values
of L coalesce and *0 scales as:

*0(L, %)t2% (8)

In that region, the relaxation time behaves therefore as {Rt2%&1. In Fig. 2
we see that the time scale of the relaxation changes when L decreases. In
the insert of Fig. 2, we show *0 vs. 2% in a log-log scale for selected values
of L. For small and medium L (in fact for 4.5-L), *0 scales as:

*0(L, %)t- 2% (9)

Therefore, in that region, the relaxation time is given by {Rt2%&1�2. For
any value of L, the extension of the activated region of the patterns in the
environment of the critical point is always 2xc=L\- 2% .

IV. SUMMARY AND ASSESSMENT

We have studied a piecewise linear bistable reaction-diffusion system,
which models superconducting microbridges, with the aim of investigating
the nature of the decay in the critical region, where the system shows a
structural instability.

The dynamical properties of the system were analyzed through its
nonequilibrium potential. That kind of approach has been scarcely used for
RD systems because the required potential conditions are not fulfilled in
general. Several applications have been already developed for the case in
which Eq. (1) is perturbed with random noise. In particular, the stationary
probability distribution is directly related to F[T ]. Barriers and escape
times from metastable states in extended dissipative systems have been
calculated as well.(16, 19�22)

We have shown here that in the vicinity of the critical point, the
parameter 2%(L) controls the extension of the activated region (i.e., the dis-
sipation) and the damped relaxation time. The time evolution of F[T ]
shows a critical slowing down in its march towards the stationary states;
its time scale is given by the damped relaxation time {R , which depends on
L and whose inverse is measured by the distance to the critical point in the
space of the parameters.
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For ballast resistor-like RD systems, the damped relaxation time can
be tuned through 2%. We expect similar results in more elaborated bistable
multicomponent models for which the implementation of the present
scheme will offer an adequate framework. In particular, Eq. (6) can be
straightforwardly generalized to multicomponent RD equations, provided
they are gradient systems.
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